Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 177: 110442, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38593554

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium associated with life-threatening healthcare-associated infections (HAIs), including burn wound infections, pneumonia and sepsis. Moreover, P. aeruginosa has been considered a pathogen of global concern due to its rising antibiotic resistance. Efficient identification of P. aeruginosa would significantly benefit the containment of bacterial infections, prevent pathogen transmission, and provide orientated treatment options. The accuracy and specificity of bacterial detection are primarily dictated by the biorecognition molecules employed. Lytic bacteriophages (or phages) could specifically attach to and lyse host bacterial cells. Phages' host specificity is typically determined by their receptor-binding proteins (RBPs), which recognize and adsorb phages to particular bacterial host receptors. This makes RBPs promising biorecognition molecules in bacterial detection. This study identified a novel RBP (Gp130) from the P. aeruginosa phage Henu5. A modified enzyme-linked phage receptor-binding protein assay (ELPRA) was developed for P. aeruginosa detection employing Gp130 as biorecognition molecules. Optimized conditions provided a calibration curve for P. aeruginosa with a range from 1.0 × 103 to 1.0 × 107 CFU/mL, with a limit of detection as low as 10 CFU/mL in phosphate-buffered saline (PBS). With VITEKⓇ 2 Compact system identification (40 positives and 21 negatives) as the gold standard, the sensitivity of ELPRA was 0.950 (0.818-0.991), and the specificity was 0.905 (0.682-0.983) within a 95 %confidence interval. Moreover, the recovery test in spiked mouse serum showed recovery rates ranging from 82.79 %to 98.17%, demonstrating the prospect of the proposed ELPRA for detecting P. aeruginosa in biological samples.

2.
Int Microbiol ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676442

RESUMO

Mycobacterium tuberculosis can manipulate the host immunity through its effectors to ensure intracellular survival and colonization. Rv1043c has been identified as an effector potentially involved in M. tuberculosis pathogenicity. To explore the function of M. tuberculosis Rv1043c during infection, we overexpressed this protein in M. smegmatis, a non-pathogenic surrogate model in tuberculosis research. Here, we reported that Rv1043c enhanced mycobacterial survival and down-regulated the release of pro-inflammatory cytokines in macrophages and mice. In addition, Rv1043c inhibited the activation of MAPK and NF-κB signaling by preventing the phosphorylation of TAK1 indirectly. In conclusion, these data suggest that Rv1043c regulates the immune response and enhances the survival of recombinant M. smegmatis in vitro and in vivo.

3.
Curr Issues Mol Biol ; 45(8): 6432-6448, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623225

RESUMO

In this study, we conducted the morphological observation, biological and genomic characterization, evolutionary analysis, comparative genomics description, and proteome identification of a recently isolated mycobacteriophage, WIVsmall. Morphologically, WIVsmall is classified as a member of the Siphoviridae family, characterized by a flexible tail, measuring approximately 212 nm in length. The double-stranded phage genome DNA of WIVsmall spans 53,359 base pairs, and exhibits a G + C content of 61.01%. The genome of WIVsmall comprises 103 protein-coding genes, while no tRNA genes were detected. The genome annotation unveiled the presence of functional gene clusters responsible for mycobacteriophage assembly and maturation, replication, cell lysis, and functional protein synthesis. Based on the analysis of the phylogenetic tree, the genome of WIVsmall was classified as belonging to subgroup F1. A comparative genomics analysis indicated that the WIVsmall genome exhibited the highest similarity to the phage SG4, with a percentage of 64%. The single-step growth curve analysis of WIVsmall revealed a latent period of 120 min, and an outbreak period of 200 min.

4.
Viruses ; 15(8)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37632078

RESUMO

Phages possess the ability to selectively eliminate pathogenic bacteria by recognizing bacterial surface receptors. Since their discovery, phages have been recognized for their potent bactericidal properties, making them a promising alternative to antibiotics in the context of rising antibiotic resistance. However, the rapid emergence of phage-resistant strains (generally involving temperature phage) and the limited host range of most phage strains have hindered their antibacterial efficacy, impeding their full potential. In recent years, advancements in genetic engineering and biosynthesis technology have facilitated the precise engineering of phages, thereby unleashing their potential as a novel source of antibacterial agents. In this review, we present a comprehensive overview of the diverse strategies employed for phage genetic engineering, as well as discuss their benefits and drawbacks in terms of bactericidal effect.


Assuntos
Bacteriófagos , Terapia por Fagos , Antibacterianos/farmacologia , Bacteriófagos/genética , Engenharia Genética , Especificidade de Hospedeiro
5.
Oxid Med Cell Longev ; 2022: 8393336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193059

RESUMO

Apelin (APLN) is an endogenous ligand of the G protein-coupled receptor APJ (APLNR). APLN/APLNR system was involved in a variety of pathological and physiological functions, such as tumorigenesis and development. However, its prognostic roles in patients with central nervous system (CNS) cancers remain unknown. The present study was designed to explore the expression profile, prognostic significance, and interaction network of APLN/APLNR by integrating data from Oncomine, GEPIA, LOGpc, STRING, GeneMANIA, and immunohistochemical staining. The results demonstrated that APLN and APLNR mRNA expression were significantly increased in CNS cancers, including both low-grade glioma (LGG) and glioblastoma (GBM), when compared with normal CNS tissues. The high APLN, but not APLNR, expression was significantly correlated with overall survival (OS), recurrence free survival (RFS), and progression free survival (PFS) of LGG patients. However, neither APLN nor APLNR expression was significantly related to prognostic value in terms of OS, disease free interval (DFI), disease specific survival (DSS), or progression free interval (PFI) for GBM patients. Additionally, immunohistochemistry staining confirmed the increased APLN expression in tissues of LGG patients with grade II than grade I. These results showed that an elevated APLN level could predict poor OS, RFS, and PFS for LGG patients, and it could be a promising prognostic biomarker for LGG.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Apelina/genética , Receptores de Apelina/genética , Biomarcadores , Neoplasias Encefálicas/genética , Glioblastoma/patologia , Glioma/patologia , Humanos , Ligantes , RNA Mensageiro/metabolismo
6.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293058

RESUMO

Hydrogen sulfide (H2S) has emerged as the third "gasotransmitters" and has a crucial function in the diversity of physiological functions in mammals. In particular, H2S is considered indispensable in preventing the development of liver inflammation in the case of excessive caloric ingestion. Note that the concentration of endogenous H2S was usually low, making it difficult to discern the precise biological functions. Therefore, exogenous delivery of H2S is conducive to probe the physiological and pathological roles of this gas in cellular and animal studies. In this review, the production and metabolic pathways of H2S in vivo, the types of donors currently used for H2S release, and study evidence of H2S improvement effects on nonalcoholic fatty liver disease are systematically introduced.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Hepatopatia Gordurosa não Alcoólica , Animais , Sulfeto de Hidrogênio/metabolismo , Gasotransmissores/metabolismo , Mamíferos/metabolismo
7.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887189

RESUMO

Non-alcoholic fatty liver disease (NAFLD), one of the most common types of chronic liver disease, is strongly correlated with obesity, insulin resistance, metabolic syndrome, and genetic components. The pathological progression of NAFLD, consisting of non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and liver cirrhosis, is characterized by a broad spectrum of clinical phenotypes. Although patients with mild NAFL are considered to show no obvious clinical symptoms, patients with long-term NAFL may culminate in NASH and further liver fibrosis. Even though various drugs are able to improve NAFLD, there are no FDA-approved medications that directly treat NAFLD. In this paper, the pathogenesis of NAFLD, the potential therapeutic targets, and their underlying mechanisms of action were reviewed.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Progressão da Doença , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
8.
Int J Biol Sci ; 18(5): 1865-1877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342348

RESUMO

Following onset of the first recorded case of Coronavirus disease 2019 (COVID-19) in December 2019, more than 269 million cases and over 5.3 million deaths have been confirmed worldwide. COVID-19 is a highly infectious pneumonia, caused by a novel virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, it poses a severe threat to human health across the globe, a trend that is likely to persist in the foreseeable future. This paper reviews SARS-CoV-2 immunity, the latest development of anti-SARS-CoV-2 drugs as well as exploring in detail, immune escape induced by SARS-CoV-2. We expect that the findings will provide a basis for COVID-19 prevention and treatment.


Assuntos
COVID-19 , Pandemias , Humanos , Imunidade , SARS-CoV-2
9.
Int J Biol Sci ; 17(13): 3573-3582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512166

RESUMO

Emergence of antibiotic resistance presents a major setback to global health, and shortage of antibiotic pipelines has created an urgent need for development of alternative therapeutic strategies. Bacteriophage (phage) therapy is considered as a potential approach for treatment of the increasing number of antibiotic-resistant pathogens. Phage-antibiotic synergy (PAS) refers to sublethal concentrations of certain antibiotics that enhance release of progeny phages from bacterial cells. A combination of phages and antibiotics is a promising strategy to reduce the dose of antibiotics and the development of antibiotic resistance during treatment. In this review, we highlight the state-of-the-art advancements of PAS studies, including the analysis of bacterial-killing enhancement, bacterial resistance reduction, and anti-biofilm effect, at both in vitro and in vivo levels. A comprehensive review of the genetic and molecular mechanisms of phage antibiotic synergy is provided, and synthetic biology approaches used to engineer phages, and design novel therapies and diagnostic tools are discussed. In addition, the role of engineered phages in reducing pathogenicity of bacteria is explored.


Assuntos
Antibacterianos/uso terapêutico , Terapia por Fagos , Animais , Receptores de Bacteriófagos/genética , Terapia Combinada , Farmacorresistência Bacteriana , Humanos
10.
Antibiotics (Basel) ; 10(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572473

RESUMO

Staphylococcus aureus phage Henu2 was isolated from a sewage sample collected in Kaifeng, China, in 2017. In this study, Henu2, a linear double-stranded DNA virus, was sequenced and found to be 43513bp long with 35% G + C content and 63 putative open reading frames (ORFs). Phage Henu2 belongs to the family Siphoviridae and possesses an isometric head (63 nm in diameter). The latent time and burst size of Henu2 were approximately 20 min and 7.8 plaque forming unit (PFU)/infected cells. The Henu2 maintained infectivity over a wide range of temperature (10-60 °C) and pH values (4-12). Phylogenetic and comparative genomic analyses indicate that Staphylococcus aureus phage Henu2 should be a new member of the family of Siphoviridae class-II. In this paper, Phage Henu2 alone exhibited weak inhibitory activity on the growth of S. aureus. However, the combination of phage Henu2 and some antibiotics or oxides could effectively inhibit the growth of S. aureus, with a decrease of more than three logs within 24 h in vitro. These results provide useful information that phage Henu2 can be combined with antibiotics to increase the production of phage Henu2 and thus enhance the efficacy of bacterial killing.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32987825

RESUMO

Tuberculosis (TB), one major threat to humans, can infect one third of the worldwide population, and cause more than one million deaths each year. This study aimed to identify the effective diagnosis and therapy biomarkers of TB. Hence, we analyzed two microarray datasets (GSE54992 and GSE62525) derived from the Gene Expression Omnibus (GEO) database to find the differentially expressed genes (DEGs) of peripheral blood mononuclear cell (PBMC) between TB patients and healthy specimens. Functional and pathway enrichment of the DEGs were analyzed by Metascape database. Protein-protein interaction (PPI) network among the DEGs were constructed by STRING databases and visualized in Cytoscape software. The related transcription factors regulatory network of the DEGs was also constructed. A total of 190 DEGs including 36 up-regulated genes and 154 down-regulated genes were obtained in TB samples. Gene functional enrichment analysis showed that these DEGs were enriched in T cell activation, chemotaxis, leukocyte activation involved in immune response, cytokine secretion, head development, etc. The top six hub genes (namely, LRRK2, FYN, GART, CCR7, CXCR5, and FASLG) and two significant modules were got from PPI network of DEGs. Vital transcriptional factors, such as FoxC1 and GATA2, were discovered with close interaction with these six hub DEGs. By systemic bioinformatic analysis, many DEGs associated with TB were screened, and these identified hub DEGs may be potential biomarkers for diagnosis and treatment of TB in the future.


Assuntos
Leucócitos Mononucleares , Fatores de Transcrição , Tuberculose , Biomarcadores Tumorais , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leucócitos Mononucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tuberculose/genética
14.
Oxid Med Cell Longev ; 2020: 1675613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322334

RESUMO

Ferroptosis, implicated in several diseases, is a new form of programmed and nonapoptotic cell death triggered by iron-dependent lipid peroxidation after inactivation of the cystine/glutamate antiporter system xc-, which is composed of solute carrier family 7 membrane 11 (SLC7A11) and solute carrier family 3 membrane 2 (SLC3A2). Therefore, inducing ferroptosis through inhibiting the cystine/glutamate antiporter system xc- may be an effective way to treat cancer. In previous screening tests, we found that the benzopyran derivative 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) significantly inhibited the viability of colorectal cancer cells. However, the impact of IMCA on ferroptosis remains unknown. Hence, this study investigated the effect of IMCA on ferroptosis and elucidated the underlying molecular mechanism. Results showed that IMCA significantly inhibited the cell viability of colorectal cancer cells in vitro and inhibited tumor growth with negligible organ toxicity in vivo. Further studies showed that IMCA significantly induced the ferroptosis of colorectal cancer cells. Mechanistically, IMCA downregulated the expression of SLC7A11 and decreased the contents of cysteine and glutathione, which resulted in reactive oxygen species accumulation and ferroptosis. Furthermore, overexpression of SLC7A11 significantly attenuated the ferroptosis caused by IMCA. In addition, IMCA regulated the activity of the AMPK/mTOR/p70S6k signaling pathway, which is related to the activity of SLC7A11 and ferroptosis. Collectively, our research provided experimental evidences on the activity and mechanism of ferroptosis induced by IMCA and revealed that IMCA might be a promising therapeutic drug for colorectal cancer.

15.
Genes (Basel) ; 11(3)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197507

RESUMO

Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.


Assuntos
Células Dendríticas/imunologia , Imunização/métodos , Terapia de Imunossupressão/métodos , Sepse/imunologia , Animais , Células Dendríticas/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Sepse/terapia
16.
Viruses ; 12(2)2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098422

RESUMO

After the outbreak of the severe acute respiratory syndrome (SARS) in the world in 2003, human coronaviruses (HCoVs) have been reported as pathogens that cause severe symptoms in respiratory tract infections. Recently, a new emerged HCoV isolated from the respiratory epithelium of unexplained pneumonia patients in the Wuhan seafood market caused a major disease outbreak and has been named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes acute lung symptoms, leading to a condition that has been named as "coronavirus disease 2019" (COVID-19). The emergence of SARS-CoV-2 and of SARS-CoV caused widespread fear and concern and has threatened global health security. There are some similarities and differences in the epidemiology and clinical features between these two viruses and diseases that are caused by these viruses. The goal of this work is to systematically review and compare between SARS-CoV and SARS-CoV-2 in the context of their virus incubation, originations, diagnosis and treatment methods, genomic and proteomic sequences, and pathogenic mechanisms.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pneumonia Viral , Síndrome Respiratória Aguda Grave , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , China/epidemiologia , Quirópteros/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Reservatórios de Doenças , Suscetibilidade a Doenças , Eutérios/virologia , Genoma Viral , Saúde Global , Humanos , Período de Incubação de Doenças Infecciosas , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Pneumonia Viral/virologia , Proteoma , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Alinhamento de Sequência , Síndrome Respiratória Aguda Grave/diagnóstico , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/terapia , Síndrome Respiratória Aguda Grave/virologia , Proteínas Virais
17.
Molecules ; 25(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979296

RESUMO

Pantoea dispersa W18, isolated from contaminated soil, was found to exert antimicrobial activity against Mycobacterium species, including Mycobacterium tuberculosis, an important human pathogen. Here, the anti-mycobacterial compound produced by Pantoea dispersa W18 was purified by a combination of hydrophobic interaction chromatography, cation exchange chromatography, and reverse phase HPLC. Active compounds from Pantoea dispersa W18 were identified as a natural peptide named pantocin wh-1 with a 1927 Da molecular weight. The primary structure of this compound was detected by N-terminal amino acid sequencing. The amino acid sequence of pantocin wh-1 consisted of 16 amino acid residues with a cyclic structure. The pantocin wh-1 could be inactivated by protease K, but was heat stable and unaffected by pH (2-12). However, the activity was not completely inactivated by trypsin and pepsin. This is the first report of a cyclic polypeptide purified from a strain of Pantoea dispersa.


Assuntos
Antituberculosos/isolamento & purificação , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Pantoea/química , Tuberculose/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antituberculosos/química , Antituberculosos/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Feminino , Temperatura Alta , Concentração de Íons de Hidrogênio , Klebsiella/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Pantoea/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/uso terapêutico , Streptococcus suis/efeitos dos fármacos
18.
Ann Transl Med ; 8(24): 1661, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33490173

RESUMO

BACKGROUND: In recent years, nanotechnology has attracted a plethora of attention due of its ability to effectively diagnose and treat various tumors. Virus-like particles (VLPs) have good biocompatibility, are safe and non-toxic, and have an internal hollow space, and as such they are often used as nano drug carriers. In recent years, it has become one of the hot spots in the field of biopharmaceutical engineering. METHODS: In this study, the tumor-targeting peptide RGD (Arg-Gly-Asp) was genetically inserted into the major immunodominant region (MIR) of the hepatitis B virus core protein (HBc). A series of characterization, including stability and optical properties, were evaluated. A visual diagnosis and analysis of the efficacy against tumor cells were conducted at the cell level and using a live animal model. RESULTS: This study demonstrated that the recombinant HBc-based VLPs could participate in self-assembly of monodispersed nanoparticles with well-defined morphology, and the near-infrared dye indocyanine green (ICG) could be packaged into the VLPs without any chemical modification. Moreover, the HBc-based VLPs could specifically target cancer cells via the interaction with overexpressed integrin αvß3. The treatment with ICG-loaded HBc-based VLPs showed significant inhibition of 4T1 breast cancer cell growth (84.87% tumor growth inhibition). The in vivo imaging experiments demonstrated that the ICG-loaded HBc-based VLPs generated excellent fluorescence in tumor sites in 4T1 breast cancer bearing mice. This provided crucial information on tumor mass location, boundaries, and shape. Moreover, compared to free ICG, the nanosystem showed significantly longer blood circulation time and superior accuracy in targeting the tumor. CONCLUSIONS: The ICG-loaded HBc-based VLPs prepared in this study were of good stability and biocompatibility. It showed strong tumor targeting specificity and tumor visualization. Thus, it is expected to provide a new experimental basis and theoretical support for the integration of VLPs in the clinical diagnosis and treatment of breast cancer.

19.
Arch Virol ; 164(9): 2389-2393, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31214784

RESUMO

Klebsiella pneumoniae is an important human pathogen that is associated with a wide range of diseases, including pneumonia and septicemia. Because of the threat of drug-resistant K. pneumoniae to humans, especially carbapenem-resistant K. pneumoniae, which is becoming a growing threat to hospitalized patients, the potential use of phage therapy has generated considerable interest. Henu1, isolated from a sewage sample, was identified as a linear double-stranded DNA phage of 40,352 bp with 53.14% G + C content and 143-bp terminal repeats. The Henu1 genome contains 45 open reading frames, and no tRNA genes were found. K. pneumoniae clinical strains with the capsular types K-1, K-2, and K-57 could be infected by Henu1. No human-virulence-related genes or lysogen-formation gene clusters were detected in this phage genome, suggesting that Henu1 is a virulent phage in its bacterial host and is safe for humans.


Assuntos
Bacteriófagos/isolamento & purificação , Genoma Viral , Klebsiella pneumoniae/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Composição de Bases , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Fases de Leitura Aberta , Filogenia
20.
J Cancer ; 10(7): 1693-1706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205525

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. Peptide V3 has shown anti-angiogenic and anti-tumor effects on S180 and H22 xenografts in nude mice. However, the detailed mechanism of action of peptide V3 has not yet been fully elucidated. In the present study, the effects of peptide V3 on the growth of human HCC cells were examined both in vitro and in vivo. Our results showed that peptide V3 inhibited the proliferation, viability, migration, and invasion of human HCC cells. However, no obvious effect was observed in HL-7702 cells. Peptide V3 increased the apoptosis and decreased the protein levels of H-RAS, phospho (p)-RAF, p-MEK, and p-extracellular signal-regulated protein kinase (ERK) in human HCC cells. Peptide V3 suppressed the growth of human HCC xenografts by down-regulating angiogenesis and up-regulating apoptosis. In conclusion, peptide V3 could inhibit the growth of human HCC by inhibiting the Ras/Raf/MEK/ERK signaling pathway. Novel peptides and modification strategies could be designed and applied for the treatment of different types of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...